
Hard Real-Time: C++ versus RTSJ
Daniel L. Dvorak and William K. Reinholtz

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, California, 91109 USA

1-818-393-1986, 1-818-354-6419
{daniel.l.dvorak, william.k.reinholtz}@jpl.nasa.gov

ABSTRACT
In the domain of hard real-time systems, which language i s
better: C++ or the Real-Time Specification for Java (RTSJ)?
Although standard Java provides a more productive
programming environment than C++ due to automatic
memory management, that benefit does not apply to RTSJ
when using NoHeapRealtimeThread and non-heap memory
areas. As a result, RTSJ programmers must manage non-heap
memory explicitly. Although that’s a common practice in
real-time applications, it’s also a common source of
programmer error, regardless of language. In an ironic role
reversal, this paper shows that C++ is able to provide a safer
programming environment than RTSJ (or C) for managing
memory in a hard-real-time producer/consumer pattern. C++
accomplishes this via a reference-counting pointer. RTSJ
(and C) cannot provide an equivalent mechanism because it
lacks the necessary language features. Despite other
attractive features of RTSJ, the relative simplicity and safety
of the C++ programming model for this common pattern
suggests that C++ will be a strong competitor to RTSJ in the
domain of real-time mission-critical systems.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – classes and objects, control structures, dynamic
storage management, frameworks

General Terms
Design, Reliability, Languages.

Keywords
Programming model, architecture, concurrency, real-time.

1. INTRODUCTION
Since its emergence in 2000, the Real-Time Specification for
Java [1] (RTSJ) has generated considerable interest because i t
enables real-time applications to be programmed in the
popular Java programming language, with no syntactic
changes to the language. Real-time facilities are provided via
APIs whose real-time properties are provided by a modified
JVM. Given Java’s popularity and productivity advantage
relative to C++, plus its attention by both the research
community and tool vendors, the RTSJ has the potential to

become the language of choice for real-time applications,
displacing C/C++.

To practitioners, the appeal of one programming language
versus another depends in part on the ease and naturalness of
designing and developing code for common tasks. A
“programming model” includes the things that a programmer
must know and consider at design time and what he/she must
actually code. In the case of RTSJ and C++ there is a notable
difference in programming models for hard real-time
applications. By “hard real-time” we mean that timing
requirements must always be met; execution must be
predictable in that real-time tasks are released on schedule
and complete within their deadlines. Failure to do so can be
as serious as an error in program logic. Hard real-time is not
the same as “real fast”, though that’s sometimes necessary in
order to meet performance requirements.

This report illustrates differences between RTSJ and C++ in
how each language implements a real-time
producer/consumer pattern. This pattern is common in real-
time control systems and it happens to expose fundamental
language differences that affect program simplicity and
safety. Our comparison shows that the C++ programming
model is simpler and safer (in this particular case) because
C++ contains features that relieve the programmer from
worrying about when to release objects back to a memory
pool. Neither Java nor RTSJ provide the necessary features,
so RTSJ programmers are forced to explicitly program the
release of such objects.

It’s important to note that the RTSJ design in this
comparison is based on the use of NoHeapRealtimeThread
and non-heap memory. Such threads achieve guaranteed
timing behavior since garbage collection (GC) activities
cannot interfere with them. However, the emergence of real-
time garbage collectors for Java [2,3,4] offers an attractive
alternative for real-time applications, provided that they are
able to tolerate both the GC-induced preemption latencies
and the GC processing cost.

2. RTSJ BACKGROUNDER
Ordinary Java technology is not suitable for real-time
systems for several reasons: no scheduling control over
threads, unpredictable synchronization delays, run-anytime
garbage collection, coarse timer support, no event
processing, and no safe asynchronous transfer of control. The
real-time specification for Java, known as “RTSJ”, addresses
these limitations through several areas of enhanced
semantics.Copyright is held by the author/owner(s).

OOPSLA’04, Oct. 24–28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

The RTSJ was shaped by several guiding principles.
Foremost among these is the principle to “hold predictable
execution as first priority in all tradeoffs”. Another principle
is that the RTSJ introduces no new keywords of other
language extensions. Also, the RTSJ provides backward
compatibility, meaning that existing Java programs run on
RTSJ implementations. Importantly, the RTSJ APIs support
modern scheduling policies, such as Earliest Deadline First,
in addition to conventional priority-based scheduling.

It’s important to understand that “real time” doesn’t mean
“real fast”. The guiding principle of predictable execution
places more importance on specifying and meeting
timeliness constraints than on raw throughput. Real-time
applications must respond to periodic and sporadic events,
and the RTSJ provides facilities for informing a scheduler of
such constraints and determining if a set of constraints
admits a feasible schedule. The net result in RTSJ, in contrast
to purely priority-based systems, is that scheduling and
dispatching can be based on explicit timeliness information.

Most real-time applications are a mixture of “hard real-time”,
“soft real-time”, and non real-time parts, as shown in Figure
1. In this report we use the term “hard real-time” to mean that
temporal correctness criteria must always be met. For
example, if a hard real-time computation misses a deadline,
the system goes into an abnormal state. By “soft real-time”
we mean that temporal correctness criteria are almost always
met, so an occasional missed deadline (for example) i s
tolerated. By “non real-time” we mean that there are no
temporal correctness criteria. A key point here is that a single
RTSJ-compliant VM can support systems that mix hard, soft,
and non real-time parts.

The RTSJ extends Java semantics in several areas, as
summarized below. This background information is intended
to provide readers with a broad understanding of how the
RTSJ supports various aspects of real-time programming.
Some features of the RTSJ have been omitted for brevity.

2.1 Threads
The RTSJ introduces two new types of thread that have more
precise scheduling semantics than java.lang.Thread.
Parameters provided to the constructor of RealtimeThread

allow the temporal and processor demands of the thread to be
communicated to the system. NoHeapRealtimeThread
(“NHRT”) extends RealtimeThread with the restriction that
it is not allowed to allocate or even reference objects from the
Java heap, and can thus safely execute in preference to the
garbage collector. Such threads are the key to supporting
hard real-time execution because they have implicit
execution eligibility logically higher than any garbage
collector.

2.2 Scheduling
The scheduling area in RTSJ provides classes that allow the
definition of schedulable objects, manage the assignment of
execution eligibility of schedulable objects, assign “release
characteristics” to schedulable objects, and perform
“feasibility analysis” for sets of schedulable objects.

As seen in Figure 2, schedulable objects are instances of
RealtimeThread , NoHeapRealtimeThread , and
AsyncEventHandler. Each of these is assigned processor
resources according to its release characteristics and
execution eligibility. As shown in Figure 3, there are three
types of ReleaseParameters to support periodic,
aperiodic, and sporadic execution. Each of these subclasses
contains parameters needed to determine whether a feasible
schedule can be found for a set of schedulable objects.

2.3 Memory Management
The RTSJ contains classes that allow the definition of
regions of memory outside the traditional Java heap. These
new memory areas—called ImmortalMemory and
ScopedMemory—are not managed by a garbage collector.
This means that instances of NoHeapRealtimeThread can
use such memory to communicate results within hard real-
time areas as well as between hard real-time areas and soft- or
non real-time areas.

java.lang.Thread

RealtimeThread

NoHeapRealtimeThread

AsyncEventHandler

«interface»
java.lang.Runnable

«interface»
Schedulable

Figure 2. The RTSJ introduces RealtimeThread,
NoHeapRealtimeThread, and AsyncEventHandler
as new types of Runnable.

Non
real-time

Soft
real-time

Hard
real-time

No temporal predictability
required.

java.lang.Thread

Medium temporal
predictability required.

RealtimeThread

High temporal
predictability required.

NoHeapRealtimeThread

Figure 1. Most real-time systems are a mixture of hard
real-time, soft real-time, and non-real-time, all of which

can be supported by a single RTSJ-compliant VM.

ImmortalMemory is a single memory area that is shared
among all threads. Objects allocated in the immortal memory
live until the end of the application. In fact, unlike standard
Java heap objects, immortal objects continue to exist even
after there are no other references to them. Importantly,
objects in immortal memory are never subject to garbage
collection.

ScopedMemory is an abstract base class for memory areas
having limited lifetimes. A scoped memory area is valid as
long as there are real-time threads with access to it. A
reference is created for each accessing thread when either a
real-time thread is created with a ScopedMemory object as its
memory area, or when a real-time thread runs the enter()
method for the memory area. When the last reference to the
object is removed, by exiting the thread or exiting the
enter() method, finalizers are run for all objects in the
memory area, and the area is emptied. Objects in scoped
memory are never subject to garbage collection.

The memory management enhancements in RTSJ also include
facilities for access to physical memory, facilities for non-
heap memory allocation in linear time, and facilities for
obtaining information about the temporal behavior of the
garbage collector, such as its preemption latency.

2.4 Synchronization
The RTSJ contains classes that allow application of the
priority ceiling emulation algorithm to individual objects;
allow the setting of the system default priority inversion
algorithm; and allow wait-free communication between real-
time threads and regular Java threads. This strengthens the
semantics of Java synchronization for use in real-time
systems by mandating priority inversion control. The wait-
free queue classes provide protected, concurrent access to
data shared between instances of java.lang.Thread and
NoHeapRealtimeThread.

2.5 Time
The RTSJ contains classes that allow description of a point
in time with up to nanosecond accuracy and precision
(dependent on the precision of the underlying system), and
allow distinctions between absolute points in time, times
relative to some starting point, and rational time, which
allows the efficient expression of number of occurrences per
some interval of relative time.

The time class relationships are depicted in Figure 6.
Instances of AbsoluteTime represent absolute time
expressed relative to midnight January 1, 1970 GMT.
Instances of RelativeTime encapsulates a point in time that
is relative to some other time value. Instances of
RationalTime express a frequency as an integral number of
cycles per an amount of relative time.

MemoryArea

+ enter()
+ executeInArea()
+ memoryConsumed()
+ memoryRemaining()
+ newInstance()
+ newArray()

HeapMemory

+ instance()

ImmortalMemory

+ instance()

Scoped Memory

• Normal Java heap
• Subject to GC
• Not accessible by

NoHeapRealtimeThread

• Accessible by all
threads

• Not subject to GC
• Objects live until end of

application

• Object lifetime limited
• Not subject to GC
• Scope emptied after all

threads exit it

Figure 4. The RTSJ introduces two kinds of non-heap
memory that are not subject to garbage collection.

ReleaseParameters
- execution cost
- deadline
- cost overrun handler
- deadline overrun

handler

PeriodicParameters
- start time
- period

AperiodicParameters
(can become active at any
time)

SporadicParameters
- Minimum inter-arrival time

Figure 3. Release parameters supply processor and
temporal demands needed to determine schedule feasibility.

2.6 Timers
The RTSJ contains classes that allow creation of timer whose
expiration is either periodic (PeriodicTimer) or set to
occur at a particular time (OneShotTimer). RTSJ also defines
an abstract base class for clocks, recognizing that real
systems often have other kinds of clocks (e.g. simulation
clocks, user time clocks), and allows timers to specify such a
clock in place of the default system clock.

2.7 Asynchrony
The RTSJ contains classes for binding the execution of
program logic to the occurrence of internal and external
events. Specifically, an asynchronous event is represented as
an instance of class AsyncEvent or a subclass. An event
occurrence may be initiated by application logic (by
invoking the event instance’s fire() method) or by the
occurrence of a “happening” that is external to the JVM, such
as a hardware interrupt.

Each instance of AsyncEvent may have one or more
instances of AsyncEventHandler associated, as shown in
Figure 7. The converse also holds: every instance of
AsyncEventHandler may have one or more instances of
AsyncEvent associated. Every time an event occurs, the
associated handlers are made eligible to run; dispatching of
the handler is subject to its release parameters.

3. PROBLEM DOMAIN
Many real-time applications are “control systems”, i.e., they
interact with the real world through sensors and actuators to
control some physical system, whether it be a rover on the
surface of Mars or the powertrain in your automobile. In
either case, these systems are designed for continuous
operation and employ “closed-loop” (feedback) control,
usually with time-critical requirements. For example, control
of the driving motors on one of the experimental Mars rovers
runs at a 200 Hz rate. Such control systems are termed “hard
real-time” to the extent that any failure to satisfy the
timeliness requirements puts the system into an abnormal
state.

Control systems contain many real-time producer-consumer
relationships. For example, one task acquires data from
sensors; another task gets that data and computes new state
estimates; another task gets a state estimate and computes a
control response; another task issues the control commands
to actuators. In each such relationship data must flow from
producer to consumer, and the data is often a structure or
object, not a primitive type. Also, much of the data is of
fleeting importance, to be replaced by newer data on the next
cycle of execution.

Efficient use of memory is a hallmark of many real-time
systems. Usually they cannot afford the runtime overhead of
general-purpose memory allocation, such as malloc or new,
so they manage pools of pre-allocated objects, recycling the
objects continually via code inside consumers that release
objects back to a pool after using them. In a perfect world
this works very well, but history has shown this to be a
common source of error. Programmers may neglect to release
an object, particularly in a rarely used branch of code, or may
release an object but continue to use it. Either way, the
results can be disastrous. For this reason, the programming
model for working with memory pool objects is a major
point of comparison in the following sections.

4. PRODUCER/CONSUMER PATTERN
This paper compares RTSJ to C++ in terms of how simply and
safely each language handles a common task in real-time
applications, namely, data-handling in a real-time
producer/consumer relationship, as shown in Figure 8.
Several requirements and constraints apply: there is one
producer and multiple consumers; both producer and

java.lang.Thread Yes No No

RealtimeThread Yes Yes Yes

NoHeapRealtimeThread No Yes Yes

«interface»
java.lang.Comparable

RelativeTimeAbsoluteTime

RationalTime

HighResolutionTime

Figure 6. High resolution time supports timing
with nanosecond accuracy and precision, subject

to the underlying system’s accuracy and precision.

AsyncEvent

+ addHandler()
+ removeHandler()
+ fire()

AsyncEventHandler

+ addIfFeasible()
+ handleAsyncEvent()

«interface»
Schedulable

0..*

0..*

event

handler

Figure 7. Asynchronous events and their handlers can
have a many-to-many relationship in the RTSJ.

consumer(s) are periodic threads; the producer and its
consumer(s) may have different periods; all threads must
satisfy temporal correctness requirements; the data generated
by the producer is immutable (or at least it is not supposed
to be modified by any consumer); and producers may
generate data structures (not simply a built-in type) that
must be conveyed to its consumer(s). This is a “data pull”
pattern, meaning that the consumers actively pull the
produced data, as needed, whenever needed. In the larger
context, a thread can be both a producer and a consumer and
therefore may participate in multiple producer-consumer
relationships.

In ordinary object-oriented programming a multithread-safe
design for conveying data from producer to consumer(s)
involves locks. Java is particularly elegant here, not only for
the simplicity of its synchronized methods, as shown in
Figure 9, but also for its automatic memory management that
frees the programmer from thinking about when to delete
objects that are no longer needed. The programming model i s
simple and foolproof, but the use of locks for this purpose i s
undesirable in real-time systems for several reasons. First,
locks incur a non-trivial amount of overhead that can slow
down high-frequency control loops, even in the absence of
contention. Second, when contention does occur, the
application incurs the cost of context switching, raising the
worst-case execution time of the contending thread by the
amount of time needed for the holding thread to complete its

work and release the lock (this makes it hard to determine
worst-case execution time). Third, locks are a source of
potential priority inversions and deadlocks, either of which
can lead to system failure.

For the reasons just given, the RTSJ and C++ designs shown
in following sections do not use locks. Instead, both rely on
atomic operations to manage the exchange of data in a multi-
thread-safe and multi-processor-safe manner. Although the
mechanisms are different in the two languages, the
differences are not material in this study. The important
property is that a producer can safely update its data at any
time and consumers can safely read it at any time, all without
locks and therefore without the possibility of contention-
induced context-switching.

Regardless of language, there are two basic operations that
must be designed. First, a producer must generate new data
and make it available to consumers without modifying any
objects currently in use by any consumer. Second, consumers
must somehow release data objects when no longer needed so
that the memory can be reused. To minimize defects, such
releases should occur implicitly rather than through
imperative statements.

5. RTSJ IMPLEMENTATION
Given the requirement that producers and consumers must
always satisfy temporal correctness requirements, both must
use the RTSJ class NoHeapRealtimeThread1. Threads of this
type guarantee highly predictable execution since they can
always run in preference to the garbage collector. Such
threads cannot reference heap memory, so all data generated
by a producer and used by a consumer must be held in
scoped memory or immortal memory.

Although scoped memory is intended for temporary objects,
such as those passed from producer to consumer, it cannot be
used in this situation for at least two reasons. First, the data
generated by a producer must always be available for all
consumers to read; it cannot be held in a scoped memory area
since that scope will have to be emptied on some regular
basis. Second, a thread may participate in multiple producer-
consumer relationships in multiple control loops, and there
is no ordering of scope ‘enter’ calls (in the general case)
that satisfies the RTSJ’s single-parent rule for scope stacks.

Given the need to use immortal memory, coupled with the
fact that all objects created in immortal memory are, well,
immortal, it’s clear that such objects for transient data must
be managed and reused. The design therefore relies on the
concept of memory pools, where threads may obtain objects,
initialize them, use them, and ultimately release them back to
the pool.

5.1 Producer
A producer is a periodic NoHeapRealtimeThread that updates
some data on each cycle. Since a producer must not modify
an object currently in use by any consumer, the producer
must obtain an unused object from the pool, initialize it, and
then use an atomic instruction to expose the data to
subsequent ‘get’ calls by consumers.

1 This report focuses on RTSJ mechanisms that are

independent of any garbage collector; it does not consider
real-time garbage collectors in the solution space.

// Java code fragment for producer.
// Uses synchronized set and get methods.

class Producer {
 private X latest;

 private synchronized void set(X value) {
 latest = value;
 }

 public synchronized X get() {
 return latest;
 }

 // Producer code that calls set
 ….
}

Producer 1
period = p1

Consumer 1
period = p2

Consumer 2
period = p3

get get

Figure 8. This real-time producer-consumer pattern
has one producer and multiple consumers, each

running with potentially different periods. A
consumer gets data from a producer.

Figure 9. Synchronized methods in ordinary Java
provide an elegant multithread-safe solution for the
producer-consumer problem, but not for real-time.

From the viewpoint of the programming model, writing a
producer is familiar territory for Java programmers: call a
factory method to obtain and initialize an object from the
pool, then store the reference to that object in a field whose
value is returned by get(). Since assigning a new value to a
reference field is an atomic operation in Java, no special care
is needed.

5.2 Consumer
A consumer is a periodic NoHeapRealtimeThread that gets
the latest available data from one or more producers and uses
it in some way, possibly even to generate new data as a
producer to other consumers. In calling a producer’s ‘get’
method, a consumer obtains a reference to an object that the
producer had obtained earlier from a memory pool. Other
consumers will obtain a reference to the same object if they
call ‘get’ before the next producer update. Behind the scenes,
each time that a consumer obtains an object, that object’s
usage count is incremented atomically, thus ensuring that
the producer will not reuse that object until the usage count
returns to zero. It is the responsibility of each consumer to
eventually ‘release’ the object so that it can be returned to
the pool when all consumers are done with it, i.e. when the
usage count becomes zero.

It should be noted that reference counting could be avoided
if the producer’s get() method returned a copy of the
producer’s current data object. In RTSJ, the consumer (the
caller) can arrange to be running in a scoped memory area
when it calls get(). The copy would then be constructed in the
consumer’s (the caller’s) scoped memory area, and used in
normal ways. The consumer would be designed to exit the
scoped memory area periodically, thereby emptying it. While
this approach might be acceptable in some situations, it adds
an undesirable runtime overhead, particularly for large
objects.

6. C++ IMPLEMENTATION
In contrast to RTSJ, C++ has a uniform memory area. Any
kind of thread can access any object in heap or static
memory. There is no garbage collector to be avoided, there
are no non-heap memory areas, and there are no memory area
assignment rules. From this viewpoint the programming
model is simpler.

A key mechanism that makes the C++ programming model
even simpler is a lock-free, thread-safe, multi-processor-safe
reference counting pointer (RCP) [5]. The RCP is a template

class that maintains a reference count associated with the
pointed-to object (the referent). Each time that an RCP i s
constructed or assigned, it increments the reference count in
the referent. Similarly, each time that an RCP goes out of
scope, and is therefore destroyed, it decrements the count in
the referent. Also, when an initialized RCP is assigned a new
referent, it first decrements the count in the old referent. The
net effect is that an object’s reference count always equals the
number of RCPs pointing to it. When the reference count
goes to zero, the referent’s delete() method is executed.
For objects that are designed to live in a memory pool, the
delete() method is defined to return the object back to the
pool’s freelist. The net result is a simpler programming
model in which C++ programmers don’t have to worry about
manual memory management. The RCP’s implementation
depends on processor-atomic instructions, as detailed in [5].

6.1 Producer
A producer is a periodic Posix thread that updates its data on
each cycle. Like the RTSJ producer, it obtains an object from
a pool, initializes it, and then atomically exposes it as the
object to be returned by subsequent calls to its ‘get’ method.
The only difference is that the C++ code manipulates
reference-counting pointers rather than Java references.
Otherwise, the two producers are identical in terms of
simplicity and safety.

6.2 Consumer
A consumer is a periodic Posix thread that gets the latest data
from one or more producers. The producer’s ‘get’ method
returns a RCP to a ‘const’ object that the consumer typically
assigns to a local RCP. At some later time, when the
consumer is done using the referent, it may either let the RCP
go out of scope (i.e. let it pop off the stack) or it may reassign
the RCP with a new value from the producer. In either case,
the referent’s reference count is decremented automatically
and the object is returned back to the memory pool when the
count goes to zero.

6.3 Limitation
A well-known limitation of reference counting is that it’s not
suitable for circularly linked data structures. In our
experience, such data structures don’t appear in real-time
control loops, so this has not been a limitation in practice.

// RTSJ code fragment for consumer

class Consumer {
 private X data;
 …
 // get latest data from producer
 data = aProducer.get();

 // access data
 doSomething(data.getValue());
 …
 // When done using producer’s data,
 // must release object back to its pool.
 data.release();

….
}

// C++ code fragment for consumer

class Consumer {
 private RCP<const X> rcp;
 …
 // get ptr to latest data from producer
 rcp = aProducer.get();

 // access data by dereferencing the RCP
 doSomething(rcp->getValue());
 …
 // No explicit release needed. When RCP
 // goes out of scope or is reassigned,
 // it automatically decrements reference
 // count of referent.
 ….
}

7. COMPARING RTSJ AND C++
The two implementations of the real-time producer-consumer
pattern highlight some interesting differences between the
RTSJ and C++ — differences that affect the programming
model. It is in the consumer that the C++ implementation can
be seen as clearly simpler and safer than in RTSJ, where
explicit releases must be programmed. First, the C++
programmer does nothing special to release objects back to
the pool; it happens automatically and immediately because
C++ destructors run whenever a stack object is popped, and i t
happens automatically and immediately when a RCP object
is assigned, since it has an appropriately overloaded
assignment operator. The RTSJ design is vulnerable to two
well-known bugs: memory leaks due to failure to release, and
consumer use of an object after it was released. It’s ironic that
C++ is able to provide an automatic memory management
mechanism in this situation whereas RTSJ (and Java) cannot.

Second, a producer in C++ is able to protect its data against
illegal mutation by consumers since C++ is able to return a
pointer to a const object. Since ‘const’ is a type qualifier,
any attempt to violate ‘constness’ is detected at compile
time. Java (and thus RTSJ) cannot return a “reference to a
constant object”. Again, the C++ consumer is easily
protected against a kind of bug (illegal mutation of data) that
can be extremely hard to debug.

To be fair, RTSJ has advantages of its own, relative to C++.
Most important for real-time programming is the scheduling
API, where temporal correctness criteria are specified
explicitly. For example, RTSJ’s release parameters specify
start time, execution cost, period, deadline, and minimum
interrarival time. These parameters are checkable at design
time in a feasibility analysis, and run-time violations will
trigger cost overrun handlers, deadline miss handlers, and
minimum interarrival time exceptions. Another feature
enables programmers to separate the execution costs of
“normal case: do a little work” versus “error case: do a lot of
work”. This enables more effective use of CPU cycles since
the scheduler does not have to reserve so much time for rare-
but-costly error cases.

8. EPILOGUE
Although it’s interesting to compare C++ and RTSJ, the
longer-term debate shouldn’t be about these specific
languages. The bigger problem is that real-time applications
coded in either language embed several ‘commitments’ that
are hard to change in the middle of a project. These code-
level commitments include choices such as: memory pools
or not, scoped vs. immortal memory, partitioning of
functionality among threads, locks that may be unnecessary
(depending on execution model choices), and thread
priorities. The problem is that these choices are incidentals,
not essentials; they don’t express or reveal the underlying
requirements; they are a means to an end. What we really
want is to specify the essentials explicitly and let an analyzer
generate the language- and platform-specific incidentals that
will satisfy the requirements — or tell us that no feasible
solution exists. The essentials are: data structures for inputs
and outputs, pure functions that perform state
transformations, and required properties of sequencing,

timing, concurrency, etc. These concepts relate directly to the
problem domain and are neutral with respect to language,
software architecture, and hardware architecture.
Consequently, they leave options open late in the
development and testing cycle, rather than making early (and
sometimes regrettable) commitments that can only be
changed at great cost.

Do we still care about programming languages? Yes, because
the vision described above is still a topic of research.
Perhaps the most important “take away” message for
practitioners here is to maintain a clear mental separation
between essentials (things dictated by the problem domain)
and incidentals (choices about how to choreograph the real-
time execution of many pieces of functionality). The more
you can do to keep the two concepts separated in the code,
the more flexibility you’ll have in responding to late-
breaking changes in requirements and negative surprises in
performance testing.

9. ACKNOWLEDGEMENTS
This work was performed jointly by the Jet Propulsion
Laboratory of California Institute of Technology, by Sun
Microsystems Laboratory, and by Carnegie Mellon
University. The work at JPL was performed under contract
with the National Aeronautics and Space Administration. The
JPL team thanks the Office of the Chief Scientist for funding
under the Research & Technology Development Program, and
the strong support of the R&TD steering committee on the
Software Techniques & Methods Initiative.

10. REFERENCES
[1] Bollella, G. et al, The Real-Time Specification for Java,

Addison-Wesley, 2001. http://rtj.org

[2] Bacon, D., Cheng, P., and Rajan, V. The Metronome: A
Simpler Approach to Garbage Collection in Real-Time
Systems. Workshop on Java Technologies for Real-
Time and Embedded Systems (Catania, Sicily, November
2003), in Proceedings of the OTM Workshops, R.
Meersman and Z. Tari, eds., Lecture Notes in Computer
Science vol. 2889, pp. 466-478.

[3] Siebert, F. The Impact of Realtime Garbage Collection on
Realtime Java Programming. In Proceedings of the
Seventh IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC
2004), (Vienna, Austria, May 12–14, 2004).

[4] Nilsen, K. Doing Firm-Real-Time with J2SE APIs.
Workshop on Java Technologies for Real-Time and
Embedded Systems (Catania, Sicily, November 2003),
in Proceedings of the OTM Workshops, R. Meersman and
Z. Tari, eds., Lecture Notes in Computer Science vol.
2889, pp. 371-384.

[5] Reinholtz, William K. A Lock-Free, Async-Safe, Thread
Safe, and Multi-Processor Safe Reference Counting
Pointer. To appear in C/C++ Users Journal

